Dr Sewell is not alone in this concern. Generations of creationists have had this concern. However, the answer given is so obvious that even creationist bastions such as the Institute of Creation Research no longer recommend using this issue in debates. That answer is that SLoT only applies in closed systems, and the Earth is not a closed system. The surface of the planet receives energy from the Sun, energy from its core (from radioactive decay and residual heat of friction) and these sources overcome the trend towards higher entropy.
Dr Sewell has attempted to avoid this answer by arguing in several ways. One is to try to apply SLoT to an open system. Another is to attack the idea of compensation that appears in some elaborations of the answer given above.
Dr Sewell's argument is that even an open system MUST rely on passage through the boundary of anything that that is going to increase inside the system.
If an increase in order is extremely improbable when a system is closed, it is still extremely improbable when the system is open, unless something is entering which makes it NOT extremely improbable.
The above quote is from Dr Sewell's Can ANYTHING Happen in an Open System?
One of the biggest problems with this argument, which Dr Sewell has called his controversial tautology, is that it expands SLoT to cover any diffusion problem at all. We can break this down into two sub-problems, expanding SLoT and treating the issue as a diffusion problem.
Can SLoT be expanded to cover anything beyond thermal entropy? Obviously, Dr Sewell says yes here, and in his invocation of "X-order" in the AML paper. At the same time, in a later article he criticizes Dr Dan Styer for allegedly applying SLoT broadly. He has perhaps learned something, since most scientists would agree that you can't, willy nilly, go applying conservation laws wherever and whenever you feel like it.
Secondly, not all of the universe is a diffusion problem. Let's say that my open system of choice is a crowded bar, and I'm interested in the amount of whiskey in the bar as whiskey diffuses across the boundary I've drawn around the bar. Is the amount of whiskey in the bar solely dependent on the amount crossing the boundary? Obviously not, it also depends on the rate at which it is consumed within the bar, the rate at which sober customers (who are not, themselves, made of whiskey) arrive, and the rate at which inebriated customers (partially made of metabolized whiskey) exit.
What is true of whiskey is also true of cosmic rays, high energy photons, radioactive atoms, and many other things. They can enter through a boundary around an open system, but there are significant transformational processes that can occur within the system as well. So Dr Sewell's controversial tautology is neither controversial nor a tautology. It is simply wrong.
This is why Dr Sewell's argument fails at explaining photosynthesis. Similar to the crowded bar, we draw the boundary around the cell wall of a cyanobacteria. Light enters at one frequency, strikes various molecules, is absorbed, its energy is changed into thermal motion and the potential state of various electrons, sugars are produced and eventually a low energy infra-red photon exits the boundary. Sugar did not enter across the boundary. A low energy photon did not enter across the boundary. The quantity of high energy photons inside the boundary has not increased.
This brings us to compensation. We can say that the exit of the low energy photon "compensates for" the sugar. There is an energy difference between the high energy photon that came in through the boundary, and the sugar molecule. If we add in all the thermal motions and escaped photons, we should be able to make the energy equation balance.
But not the order equation. Even though the sugar molecule has lower entropy, the universe as a whole is worse off.
Dr Sewell seems to think that compensation can happen at a distance. It doesn't. Dr Styer says in his article:
Presumably the entropy of the Earth’s biosphere is indeed decreasing by a tiny amount due to evolution, and the entropy of the cosmic microwave background is increasing by an even greater amount to compensate for that decrease.
Does this mean that Dr Styer is engaged in some magical thinking that life here makes the CMB colder via some spooky action at a distance? No. Dr Styer previously wrote:
The Sun heats the Earth through electromagnetic radiation largely in the visible and near-infrared bands . The Earth radiates electromagnetic radiation largely in the far-infrared band into outer space, where it eventually joins the cosmic microwave background.
So it is clear that the CMB effect Dr Styer is referring to is based entirely on the passage of sunlight through the biosphere of the Earth. Yes, the CMB observed by someone distant from the Earth will have higher entropy than if the same sunlight had struck a dead planet of the same size and location.
Compensation is not action at a distance. You can always trace the interactions back to the point where one high entropy and one low entropy component were created, and see how the high entropy component escaped the open system. In considering the overall accounting for entropy in the closed system (the Universe) within which our open system is embedded, the escaped component is compensation for the low entropy component it left behind. It is only in this overall perspective that we need to worry about compensation, since it is only in this closed system that we need to be concerned with SLoT.
These misunderstandings and logical fallacies have led Dr Sewell to embarrass himself once again, by writing to the journal that published Dr Styer's article, the American Journal of Physics. In a blog entry on Uncommon Descent, Dr Sewell calls AJP a "major physics journal". In fact, it is a journal for articles related to teaching physics to high school and college students. The rejection message he received makes that clear, as well as making clear the overall high crank science level of his writing.